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Abstract
The lattice Toda field theory for finite-dimensional simple Lie algebras is
studied. We show that the Poisson structure for the lattice Toda fields is closely
related to that for theq-deformed W algebra. By making use of this relationship,
we construct the lattice W algebra. We discuss the cases of B2 and C2 in detail,
and associate them with the continuous theory.

PACS numbers: 02.30.Ik, 02.20.-a, 02.40.-k, 05.50.+q

1. Introduction

The extension and deformation of integrable nonlinear systems have been studied from many
aspects of mathematical physics. Especially the Toda equation and its various extensions are
paid much attention because of the rich mathematical structure [1–8]. We focus on an extension
of the two-dimensional Toda equation based on simple Lie algebras [1], which is called the
Toda field equation [5, 9],

∂2

∂t∂x
φ(i) = −

l∑
j=1

Bij eφ(j)

. (1.1)

Here φ(i) ≡ φ(i)(x, t) (i ∈ {1, 2, . . . , l} and t, x ∈ R) are Toda fields, and the space and time
coordinates are denoted by x and t respectively. The matrix Bij denotes a symmetrized Cartan
matrix for the finite-dimensional simple Lie algebra g whose rank is l. The Hamiltonian H

for the Toda field equation (1.1) is given by

H =
l∑

i=1

Qi Qi =
∫

dx eφ(i)

(1.2)

where Qi are called the screening variables. It is well known that the Toda field theory realizes
the W algebra [10,11], and that the W algebra generates a kernel of the Hamiltonian (1.2) [5,8].
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The lattice Toda field theory describes a deformation of equation (1.1) to have a discrete
space coordinate, while a time coordinate remains continuous. This was first introduced for
g = A1 as the lattice Liouville theory [12], and developed linking on the lattice W algebra for
general Al cases [13–18]. In [19], we introduced the lattice Toda field equation for general
finite-dimensional simple Lie algebras g, whose Hamiltonian structure is described by the
Poisson brackets on the lattice. Further we found that the lattice Toda fields are related to other
integrable systems [19, 20]: the T system [21] and the q-deformed W algebra [22–24].

In this paper, as a sequel of our previous work [20] we study the correspondence of the
Poisson structure for the lattice Toda fields and the q-deformed W algebra in detail, and apply
it to construct the lattice W algebra. The Poisson structure for the q-deformed W algebra can
be naturally translated into that on the lattice, since this q-deformed algebra is defined on the
q-difference coordinate. Based on the study of the g = Al case [17, 25], in [20] we found
that the Poisson brackets for one of the fundamental fields defined in the q-deformed theory
are translated into those in the lattice Toda field theory for general g cases. In this paper we
further show that the correspondence reaches the crucial point to define the W algebra, namely
the action of the screening operators on local fields in the q-deformed theory can be translated
into the Poisson brackets of the local fields and the screening variables in the lattice theory.
This fact allows us to construct the lattice W algebra by making use of the generators of the
q-deformed W algebra. We concretely study the lattice W algebras for g = B2 and C2, which
are the simplest examples with non-simply-laced Dynkin diagrams. It is remarkable that the
lattice Miura transformation has a form which is not expected from the continuous theory [26].
We also discuss the continuous limit of the lattice WB2, C2 currents.

This paper is arranged as follows. In section 2, after giving general formulae for the
Lie algebras g, we introduce the lattice Toda field equation and its Hamiltonian structure
following [19]. In section 3, we briefly review the q-deformed W algebra for g [22]. In
section 4, we discuss the correspondence of the lattice Toda field theory and the q-deformed
W algebra. We give detailed results in the cases of classical simple Lie algebras. By using
what is shown in section 4, we study the lattice W algebra for g = B2 and C2 in section 5. It is
interesting to observe that the dual structure of B2 and C2 appears in the lattice W algebras. We
also discuss the continuous limit of the lattice W currents and its symmetry. The last section,
section 6, is devoted to the concluding remarks.

2. The lattice g-Toda field equation

2.1. General formulae for g

We give general formulae for Lie algebras, which are used in this paper. Let g be a finite-
dimensional simple Lie algebra of rank l, and we denote simple roots ai where i ∈ I ≡
{1, 2, . . . , l}. The Cartan matrix C = (Cij )1�i,j�l is given by

Cij = 2
(ai, aj )

(aj , aj )

where ( , ) is an inner product. We define a diagonal matrix D = diag(d1, . . . , dl) with

di = (ai, ai)

2
. (2.1)

We also use the minimum value dmin (respectively the maximum value dmax) of di ; dmin =
min{di | i ∈ I} (dmax = max{di | i ∈ I}), and variables dij = min{di, dj }. The matrix D

becomes an identity matrix when g has a simply laced Dynkin diagram. In the non-simply-
laced cases, dmax and dmin are given by (dmax, dmin) = (1, 1

2 ) for g = Bl, F4, (2, 1) for Cl ,
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and (3, 1) for G2. We define two kinds of symmetrized Cartan matrix B = (Bij )i,j∈I and
B = (Bij )i,j∈I by using the matrix D as

B = D−1 C Bij = 4
(ai, aj )

(ai, ai)(aj , aj )

B = C D Bij = (ai, aj ).

(2.2)

We define an ordering of simple roots ai following the Dynkin diagram where each vertex
is related to a simple root in an ordinary way. For two simple roots ai and aj , we set i � j

when the associated vertices are connected and i < j .
Further we let ωi (i ∈ I) be the fundamental weights which satisfy

(ai, ωj ) = δi,j
(ai, ai)

2
.

For each ωi , we denote by R(ωi) the fundamental representation.

2.2. The lattice g-Toda field equations

Following [19], we introduce the lattice Toda field equation. Let xi(n) (i ∈ I) be the lattice
Toda fields defined on an infinite lattice n ∈ dmin Z, which satisfy the Poisson brackets

{xi(n), xi(m)} = xi(m)xi(n), for n ≡ m(mod di)

{xi(n), xj (m)} = − 1
2xi(m)xj (n) for i � j or j � i and n ≡ m(mod dij )

{xi(n), xj (n)} = − 1
2xi(n)xj (n) for i � j

(2.3)

where we assume n < m. Others are Poisson commutative. For rational functions of xi(n), F
and G, their Poisson bracket is given by

{F, G} =
∑

i,j∈I, n,m∈dminZ

∂F

∂xi(n)

∂G

∂xj (m)
{xi(n), xj (m)}.

Further we introduce the field β(i)
n (i ∈ I, n ∈ dmin Z) in terms of xi(n),

β(i)
n = xi(n)

xi(n + di)
. (2.4)

The Poisson brackets for β(i)
n are obtained as

{β(i)
n , β(i)

m } = (δm,n+di − δm,n−di ) β
(i)
n β(i)

m for i ∈ I
{β(i)

n , β(j)
m } = (δm,n−dj − δm,n) β

(i)
n β(j)

m for i � j and di � dj

{β(i)
n , β(j)

m } = (δm,n−dj − δm,n+dj ) β
(i)
n β(j)

m for i � j and di > dj .

(2.5)

These Poisson brackets have an important feature, locality; a field β(i)
n does not Poisson

commute only with the finite number of β(j)
m , while the Poisson brackets (2.3) are non-local;

a field xi(n) is not Poisson commutative with the infinite number of xj (m).
We describe the time evolution of the fields β(i)

n by ∂
∂t
β(i)
n = {H, β(i)

n }, where the
Hamiltonian H is composed of the screening variables on the lattice Qi ;

H =
∑
i ∈ I

Qi Qi =
∑

n∈dmin Z

xi(n). (2.6)

Note that these are the lattice analogue of (1.2). Then we obtain a set of differential-difference
equations that we call the lattice g-Toda field equations;

∂

∂t
logβ(i)

n =
(∑

j � i

−Cij∑
k=1

xj (n + kdij )

)
− xi(n) − xi(n + di) +

(∑
i � j

−Cij−1∑
k=0

xj (n + kdij )

)
.

(2.7)
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In the continuous limit of a coordinate n, fields xi(n) and logβ(i)
n reduce to exp(φ(i)(x)) and

di
∂φ(i)(x)

∂x
respectively, and one sees that equation (2.7) becomes the g-Toda field equation (1.1).

Remark that the matrix elements of D (2.1) appear in the continuous limit of β(i)
n because of

the definition (2.4).

3. The q-deformed W algebra

We introduce the q-deformed W algebra for g following [22, 23]. Note that we use slightly
different notations in this paper. First we define the fields Ai(z) and Yi(z) (i ∈ I, z ∈ C)

associated with simple roots and fundamental weights of g respectively. These fields satisfy
the Poisson brackets;

{Ai(z), Aj (w)} = Bij

(
w

z

)
Ai(z)Aj (w) (3.1)

{Yi(z), Yj (w)} = Mij

(
w

z

)
Yi(z)Yj (w) (3.2)

where Bij (z) and Mij (z) are given by

Bij (z) =
∑
m∈Z

Bqm

ij zm = δ(qBij z) − δ(q−Bij z)

Mij (z) =
∑
m∈Z

(
Dqm

(Bqm

)−1Dqm)
ij
zm.

Here we set δ(z) = ∑
m∈Z

zm, and matrices Bq = (Bq

ij )i,j∈I and Dq = (Dq

ij )i,j∈I are defined
as

Bq

ij = qBij − q−Bij D
q

ij = δij (q
di − q−di )

with the symmetrized Cartan matrix B (2.2). The fields Ai(z) are written in terms of Yi(z) as
follows [23]:

Ai(z) = Yi(zq
di )Yi(zq

−di )∏
j 	=i,Cij=1 Yj (z)

∏
j 	=i,Cij=2 Yj (zq)Yj (zq−1)

∏
j 	=i,Cij=3 Yj (zq2)Yj (z)Yj (zq−2)

.

(3.3)

Next we introduce the screening operators Si (i ∈ I) which act on the fields Yi(z) as

Si · Yj (z)
± = ±δi,j Yi(z)

±Si(z) (3.4)

and obey the Leibniz rule. To construct the q-deformed W algebra, we study the intersection
of the kernel for these screening operators [22]. We consider the vector space spanned by

Y1(zq
m1)k1 · · ·Yl(zq

ml )kl for mi, ki ∈ Z (3.5)

where the action of Si is naturally defined. We assign to each of these terms an element
of the weight lattice

∑l
i=1 kiωi . It is shown that the maximal subspace which belongs to

the kernel of the screening operator Si exists, which is generated by the independent l fields
Ti(z) (i ∈ I). The field Ti(z) is related to the fundamental representation R(ωi) and given
by a sum of the terms (3.5), each of which is assigned to one of the weight vectors for R(ωi).
We let %j(z) (j ∈ J , #J = dim R(w1)) denote a field which corresponds to the j th weight
vector of R(ω1) (see [22,24] for the precise expression of %j(z) in terms of Ai(z) and Yi(z)).
By definition, the field T1(z) is simply written as

T1(z) =
∑
j∈J

%j(z). (3.6)
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Note that not all the fields %j(z) are independent of each other. The fields Ti(z) are proved
to coincide with the q-deformed characters of the finite-dimensional representation of the
quantum affine algebra Uq(ĝ) [23, 27].

By construction, the closed Poisson structure of the fields Ti(z) defines the q-deformed
W algebra. The variable transformation between %j(z) and Ti(z) should correspond to
the q-deformed Miura transformation where the fields %j(z) and Ti(z) are regarded as the
q-deformation of free fields and W currents respectively. It is natural to expect the q-deformed
analogue of a Lax operator which gives the Miura transformation. To the best of our knowledge,
such a Lax operator was discussed for g = Al [25] first, and was recently constructed for other
classical simple Lie algebras [28]. We show the Lax operator for g = B2 and C2 in section 5,
on the way to construct the lattice W algebra.

4. Correspondence of the q-deformation and the lattice

In this section we relate the q-deformed W algebra to the lattice Toda field theory in the
classical g cases. We introduced this relation in our previous work [20] by finding that the
Poisson brackets for the fields Ai(z) (3.1) are essentially same as that for the fields β(i)

n (2.5),
and related the fields β(i)

n to the fields %j(z) (3.6). Besides the field %j(z), we now consider
the field Yi(z) (3.2) to show that the action of the screening operator Si (3.4) is identified with
the Poisson structure on the lattice as Si · ∗ ∼ {Qi , ∗}, where Qi is the screening variable on
the lattice (2.6).

First we define a map which translates the fields %j(z) into the lattice fields λj (n) as [20]

%j(zq
2 k) �−→ λj (n − dmin k) for k ∈ Z (4.1)

where we assume z = q
− 2

dmin
n. This map works on the fields Yi(z) in the cases of classical

simple Lie algebras as follows:

Yi(zq
2 k) �−→ yi

(
n − dmin k − i − 1

2

)
for i ∈ I \ {l}

Yl(zq
2 k) �−→




yl

(
n − k − l − 1

2

)
for Al and Cl

yl

(
n − k + l − 2

2

)
for Bl

yl

(
n − k − l − 2

2

)
for Dl .

(4.2)

Therefore the action of the screening operators Si (3.4) on the lattice fields yi(n) becomes

Si · yj (n)± = ± δi,j yi(n)
±Si(n). (4.3)

Using the fields λj (n) introduced above, next we write the fields β(i)
n in terms of λi(n) as

shown in [20]. Due to the transformation between %j(x) and Yi(z) [22,30] and (4.2), we also
obtain the β(i)

n in terms of yi(n). In the following we show these for the classical g cases:

• Al case

β(i)
n = λi+1(n)

λi(n)
= yi+1(n)yi−1(n + 1)

yi(n)yi(n + 1)
(4.4)

for i ∈ I and y0(n) = yl+1(n) ≡ 1.
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• Bl case

β(i)
n = λi+1(n)

λi(n)
= λi(n − l + i + 1

2 )

λi+1(n − l + i + 1
2 )

=




yi+1(n)yi−1(n + 1)

yi(n)yi(n + 1)
for i ∈ I \ {l − 1, l}

yl(n)yl(n + 1
2 )yl−2(n + 1)

yl−1(n + 1)yl−1(n)

for i = l − 1

β(l)
n = λl(n)

λ0(n)
= λ0(n − 1

2 )

λl(n − 1
2 )

= yl−1(n + 1
2 )

yl(n + 1
2 )yl(n)

.

(4.5)

• Cl case

β(i)
n = λi+1(n)

λi(n)
= λi(n − l + i − 1)

λi+1(n − l + i − 1)
= yi+1(n)yi−1(n + 1)

yi(n)yi(n + 1)
for i ∈ I \ {l}

β(l)
n = λl(n)

λl(n)
= yl−1(n + 1)yl−1(n + 2)

yl(n + 2)yl(n)
.

(4.6)

• Dl case

β(i)
n = λi+1(n)

λi(n)
= λi(n − l + i + 1)

λi+1(n − l + i + 1)
=




yi+1(n)yi−1(n + 1)

yi(n)yi(n + 1)
for i ∈ I \ {l − 2, l − 1, l}

yl(n)yl−1(n)yl−3(n + 1)

yl−2(n + 1)yl−2(n)

for i = l − 2
yl−2(n + 1)

yl−1(n + 1)yl−1(n)

for i = l − 1

β(l)
n = λl(n)

λl−1(n)
= λl−1(n)

λl(n)
= yl−2(n + 1)

yl(n + 1)yl(n)
.

One now sees the correspondence of Ai(z) and β(i)
n without referring to the Poisson

brackets; the field β(i)
n written in terms of yi(n) can be identified with the fields Ai(z) (3.3) by

the map (4.2). For instance, in the g = Al case we obtain

Ai(zq
−i ) �−→ yi(n)yi(n + 1)

yi+1(n)yi−1(n + 1)

which is equal to (β(i)
n )−1. In general g cases, we have checked that the correspondence of

Ai(z) and β(i)
n and a map

δ

(
w

z
q2k

)
�−→ δm,n+dmink

derive the Poisson brackets (2.5) from (3.1). Finally, by identifying Si(n) with xi(n), the direct
calculations show that the action of the screening operator Si on the fields β(i ′)

n coincides with
the Poisson brackets of the screening variable Qi (2.6) andβ(i ′)

n . In conclusion, the q-difference
fields Ti(z) which generate the kernel of the screening operators Si are mapped to the lattice
fields which are Poisson commutative with the screening variables Qi . We denote this map as
Ti(z) �−→ ti(n).



The lattice Toda field theory and lattice W algebras for B2 and C2 1019

5. Lattice W algebra

We define the lattice W algebra as a kernel of Qi , which is generated by the lattice W currents
written solely in terms of the fields β(i)

n (2.4). This is realized by making use of the fields ti(n).
For g = Al , the lattice W algebra and its integrable structure have been studied [16–18]. In the
following we introduce the lattice W algebra for g = C2 [20] and newly construct the lattice
W currents for B2. We also study the continuous limit of the lattice W currents.

5.1. Lattice WC2 algebra

Following [20], we introduce the WC2 algebra. We have sets I = {1, 2} and J = {1, 2, 2, 1},
and define all fields on the lattice n ∈ Z. We have fields ti(n) (i ∈ I) written in terms of the
fields λj (n) (j ∈ J );

t1(n) = λ1(n) + λ2(n) + λ2(n) + λ1(n)

t2(n) = λ1(n + 1)(λ2(n) + λ2(n) + λ1(n)) + (λ2(n + 1) + λ2(n + 1))λ1(n).
(5.1)

These fields t1(n) and t2(n) are related to the fundamental representation R(ω1) and R(ω2)

respectively. The fields (4.1) λj (n) (j ∈ J ) satisfy two constraints

λ1(n + 4)λ2(n + 3)λ2(n + 1)λ1(n) = 1 λ1(n + 3)λ1(n) = 1 (5.2)

and they are written in terms of yi(n) (i ∈ I) as

λ1(n) = y1(n) λ2(n) = y2(n)

y1(n + 1)
λ2 = y1(n + 2)

y2(n + 2)
λ1 = 1

y1(n + 3)
. (5.3)

We define the Lax operator which gives the transformation from λj (n) to ti(n)

LC2(n) = (D − y1(n + 2))

(
D − y2(n + 1)

y1(n + 2)

)(
D2 − y2(n)

y2(n + 1)

)

×
(
D − y1(n)

y2(n)

)(
D − 1

y1(n)

)
= (D − λ1(n + 2))(D − λ2(n + 1))(D2 − )(n))

×(D − λ2(n − 2))(D − λ1(n − 3))

= D6 − t1(n + 2)D5 + t2(n + 1)D4 − t2(n)D
2 + t1(n)D − 1 (5.4)

where D is a shift operator; Dkf (n) = f (n + k)Dk . In (5.4), the second equality is due
to (5.3), and )(n) is given by

)(n) = λ1(n + 1)λ2(n)λ2(n − 1)λ1(n − 2) = (λ1(n + 2)λ2(n + 1)λ2(n − 2)λ1(n − 3))−1.

The Lax operator (5.4) was originally constructed for the q-deformed theory [28].
As shown in the q-deformed W algebra for C2 [22], the fields ti(n) construct the closed

but nonlocal Poisson brackets. To obtain the local Poisson brackets, we define WC2 currents
W(i)

n (i ∈ I) by using the fields ti(n) (5.1) as

W(1)
n = 1

t1(n) t1(n + 3)
W(2)

n = t2(n)

t1(n) t1(n + 1)
. (5.5)

We rewrite these W(i)
n in terms of the fields β(i)

n (2.5). Due to (4.6), one sees

β(1)
n = λ2(n)

λ1(n)
= λ1(n − 2)

λ2(n − 2)
β(2)
n = λ2(n)

λ2(n)
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and the currents (5.5) are transformed into

W(1)
n = α(3)

n(
α
(1)
n + α

(2)
n + α

(3)
n + 1

)(
α
(1)
n+3 + α

(2)
n+3 + α

(3)
n+3 + 1

)
W(2)

n = α(3)
n

(
α
(1)
n+1 + α

(2)
n+1

)
+ α(1)

n + α(2)
n + α(3)

n(
α
(1)
n + α

(2)
n + α

(3)
n + 1

)(
α
(1)
n+1 + α

(2)
n+1 + α

(3)
n+1 + 1

)
(5.6)

where we introduce fields α(i)
n (i = 1, 2, 3)

α(1)
n = β(1)

n α(2)
n = α(1)

n β(2)
n α(3)

n = α(2)
n β

(1)
n+2.

We note that these α(i)
n satisfy the following Poisson brackets:

{α(i)
n , α(i)

m } = (δm,n+1 − δm,n−1) α
(i)
n α(i)

m for i = 1, 2

{α(3)
n , α(3)

m } = (δm,n+3 − δm,n+2 + δm,n+1 − δm,n−1 + δm,n−2 − δm,n−3) α
(3)
n α(3)

m

{α(1)
n , α(2)

m } = (δm,n+1 − δm,n − δm,n−1 + δm,n−2) α
(1)
n α(2)

m

{α(i)
n , α(3)

m } = (δm,n+1 − δm,n + δm,n−2 − δm,n−3) α
(i)
n α(3)

m for i = 1, 2.

We regard (5.6) as the lattice Miura transformation for g = C2 in a sense of [12,29]. One can
check that the currents W(i)

n (5.6) are Poisson commutative with the Hamiltonian (2.6) for the
C2-Toda field equation by direct calculations. The generating relations for the lattice WC2

algebra are enumerated in the appendix.

5.2. Lattice WB2 algebra

For g = B2, we have sets I = {1, 2} and J = {1, 2, 0, 2̄, 1̄}, and all fields are defined on the
fractional lattice n ∈ Z/2. In this case, we need not only the fields λi(n) but also yi(n) to
describe the fields ti(n) (i ∈ I):
t1(n) = λ1(n) + λ2(n) + λ0(n) + λ1(n) + λ2(n)

t2(n) = 1

y2(n + 1)
+

y2(n + 1
2 )

y1(n + 1)
+

y1(n)

y2(n)
+ y2(n − 1

2 )

= y2(n + 1
2 )

(
λ0(n)

λ1(n)
λ2(n − 1

2 ) + λ0(n − 1
2 ) + λ2(n − 1

2 ) + λ1(n − 1
2 )

) (5.7)

where

λ1(n) = y1(n) λ2(n) = y2(n)y2(n + 1
2 )

y1(n + 1)
λ0(n) = y2(n)

y2(n + 1)

λ2(n) = y1(n + 1
2 )

y2(n + 1
2 )y2(n + 1)

λ1(n) = 1

y1(n + 3
2 )

.

We define the Lax operator which generates the transformation between yi(n) and ti(n)

LB2(n) = (
D

1
2 − y2(n + 1

2 )
) (

D
1
2 − y1(n + 1

2 )

y2(n + 1
2 )

)(
D − y1(n)

y1(n + 1
2 )

)

×
(
D

1
2 − y2(n − 1

2 )

y1(n)

)(
D

1
2 − 1

y2(n − 1
2 )

)

= D3 − t2(n + 1)D
5
2 + t1(n + 1

2 )D
2 − t1(n)D + t2(n)D

1
2 − 1. (5.8)

This Lax operator is different from that introduced in [28].
We remark that the dual structure of Lie algebras C2 and B2 appears in the Lax operators

LC2(n) (5.4) and LB2(n) (5.8). Note that the factors of LC2(n) are basically composed of the
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terms in t1(n) (5.1) related to R(ω1) of C2, while the factors in LB2(n) are given by the terms
in t2(n) (5.7) associated with R(ω2) for B2.

We define the lattice WB2 currents W(i)
n (i ∈ I) in terms of fields ti(n) (5.7) as

W(1)
n = 1

t1(n) t1(n + 3
2 )

W(2)
n = t2(n + 1

2 ) t2(n + 1)

t1(n) t1(n + 1)
. (5.9)

By using (4.5), we relate the fields λj (n) to β(i)
n (i ∈ I)

β(1)
n = λ2(n)

λ1(n)
= λ1(n − 1

2 )

λ2(n − 1
2 )

β(2)
n = λ2(n)

λ0(n)
= λ0(n − 1

2 )

λ2(n − 1
2 )

= λ1(n + 1
2 )

λ1(n + 1)λ2(n)

and rewrite the W currents (5.9) as

W(1)
n = α(4)

n(
α
(1)
n + α

(2)
n + α

(3)
n + α

(4)
n + 1

)(
α
(1)
n+ 3

2
+ α

(2)
n+ 3

2
+ α

(3)
n+ 3

2
+ α

(4)
n+ 3

2
+ 1
)

W(2)
n =

(
α(2)
n + α(3)

n + α(4)
n + α(3)

n α
(2)
n+ 1

2

)(
α
(2)
n+ 1

2
+ α

(3)
n+ 1

2
+ α

(4)
n+ 1

2
+ α

(3)
n+ 1

2
α
(2)
n+1

)
(
α
(1)
n + α

(2)
n + α

(3)
n + α

(4)
n + 1

)(
α
(1)
n+1 + α

(2)
n+1 + α

(3)
n+1 + α

(4)
n+1 + 1

)
α
(3)
n+ 1

2

.

(5.10)

These denote the lattice Miura transformation for g = B2. Here the fields α(i)
n (i ∈ {1, 2, 3, 4})

are given by

α(1)
n = β(1)

n α(2)
n = α(1)

n β
(2)
n+ 1

2
α(3)
n = α(2)

n β(2)
n α(4)

n = α(3)
n β

(1)
n+ 1

2

and they satisfy the Poisson brackets,

{α(i)
n , α(i)

m } = (δm,n+1 − δm,n−1) α
(i)
n α(i)

m for i = 1, 3

{α(2)
n , α(2)

m } = (δm,n+ 1
2
− δm,n− 1

2
) α(2)

n α(2)
m

{α(4)
n , α(4)

m } = (δm,n+ 3
2

+ δm,n+1 − δm,n+ 1
2

+ δm,n− 1
2
− δm,n−1 − δm,n− 3

2
) α(4)

n α(4)
m

{α(i)
n , α(i+1)

m } = (δm,n+1 − δm,n) α
(i)
n α(i+1)

m for i = 1, 2

{α(1)
n , α(3)

m } = (δm,n+1 − δm,n+ 1
2
− δm,n + δm,n− 1

2
) α(1)

n α(3)
m

{α(i)
n , α(4)

m } = (δm,n+1 − δm,n + δm,n− 1
2
− δm,n− 3

2
) α(i)

n α(4)
m for i = 1, 2, 3.

5.3. Continuous limit of WB2, C2 currents

To discuss the continuum limit of the lattice W currents W(i)
n for B2 and C2, we associate

the lattice free fields λi(n) (i ∈ I) with the free fields ri(x) on the continuous coordinate
x ∈ R [17] as

λ1(n) = exp [ε r1(x − (n − 1) ε)] λ2(n) = exp [ε r2(x − n ε)] (5.11)

where ε is an infinitesimal parameter. The lattice W currents W(i)
n (5.6), (5.10) are appropriate

to take the continuous limit using the free fields, since they can be written solely in terms of
λ1(n) and λ2(n) via β(i)

n (4.5), (4.6). In the following we study the continuous limit of the W
currents for each case.

• C2 case
After writing the currents W(i)

n (5.6) in terms of λi(n) (5.11), we expand them by ε and
obtain

W
(1)
n−1 → 1

16
+

ε2

32
w1(x) +

ε3

32

(−w1(x)
′ + w̃(x)

)
+ O(ε4)

W(2)
n − W

(1)
n−1 → 1

4
+

ε4

64

(
4w2(x) − 4w1(x)

′′ − w1(x)
2
)

+ O(ε5).
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Here we introduce the fields;

w1(x) = −r2
1 − r2

2 − 4r ′
1 − 2r ′

2

w2(x) = −4r ′′′
1 − r ′′′

2 − 3r1r
′′
1 + 2r1r

′′
2 − r2r

′′
2 + 4r ′

1r
′
2 − (r ′

2)
2

+ 2(r2
1 r

′
2 + r1r2r

′
2 + r ′

1r
2
2 ) + r2

1 r
2
2

w̃(x) = r ′
1r2 + r2r

′
2 + r ′′

1 + r ′′
2

(5.12)

where ri ≡ ri(x) and o′ ≡ ∂o
∂x

. Though an unexpected field w̃(x) is included in (5.12), the
relation betweenwi(x) and ri(x) (5.12) is nothing but the well known Miura transformation
whose Lax operator is given by

L = (∂ + r1)(∂ + r2) ∂ (∂ − r2)(∂ − r1)

= ∂5 + w1∂
3 + 3

2w
′
1∂

2 + w2∂ + 1
2 (w

′
2 − 1

2w
′′′
1 ) (5.13)

where ∂ is a quasi-differential operator, ∂f (x) ≡ f ′(x) + f (x)∂ . We note that to derive
the Miura transformation (5.12) we should consider the continuous limit of the currents
W(i)

n rather than the fields ti(n).
• B2 case

As well as the C2 case, using (5.11) we expand the lattice WB2 currents (5.10) by ε and
obtain

W(1)
n → 1

25
+

2ε2

125
w1(x) +

ε3

125
(−w′

1(x) + w̃(x)) + O(ε4)

W(2)
n − 3(W(1)

n− 1
2

+ W(1)
n ) → 2

5
+

ε4

500

(−9w′′
1(x) + 20w2(x) − 8w1(x)

2
)

+ O(ε5)

where
w1(x) = −3r ′

1 − r ′
2 − r2

1 − r2
2

w2(x) = −r ′′′
1 − r1r

′′
1 + r1r

′′
2 + r ′

1r
′
2 + r2

1 r
2
2 + r ′

1r
2
2 + r ′

2(2r1r2 + r2
1 )

w̃(x) = 2r1r
′
2 + r ′

1r2 + r2r
′
2 − r ′′

1 + 2r ′′
2 .

(5.14)

The transformation between wi(x) and ri(x) is the Miura transformation generated by the
Lax operator;

L = (∂ + r1)(∂ + r2)(∂ − r2)(∂ − r1)

= ∂4 + w1∂
2 + w′

1∂ + w2. (5.15)

The Lax operators (5.13) and (5.15) are known to give the integrable structure of
the continuous Toda field equations for B2 and C2 respectively. In constructing the Lax
operator (5.13) ((5.15)), the free field r1(x) is associated with a fundamental weight ω1 and
each factor is assigned to one of the weight vectors of R(ω1) of B2 (C2). The fields w1(x) and
w2(x) (5.12) ((5.14)) are the dynamical variables for the B2( C2)-KdV equations.

We find that the lattice Toda field theories forB2, C2 have the lattice Miura transformations
which reduce to the opposite symmetry in the continuous limit, namely the lattice WC2

currents (5.6) (WB2 currents (5.10)) are related to the Lax operator of B2 (5.13) (C2 (5.15)).
This is due to the fact that the lattice Toda field theory is based on the symmetrized Cartan
matrix B (2.2). In the C2 case, the lattice free fields λ1(n) and λ2(n) are related to the first
two weight vectors of R(ω1), ω1 = a1 + 1

2a2 and (ω1 − a1) = 1
2a2 respectively. In the

continuous limit, the root vectors are rescaled by the diagonal matrix D (2.2) as ai → diai
(that is (a1, a2) → (a1, 2a2)) which changes the previous weight vectors to ω1 = a1 + a2 and
(ω1 −a1) = a2. The rescaled weights remind us of the construction of R(ω1) of B2. Similarly,
the continuous limit of the lattice free fields for B2 relates to R(ω1) of C2. Recall that at the
end of section 2 we have mentioned the continuous limit of the lattice Toda field equation and
a field β(i)

n reduces to di
∂φ(i)(x)

∂x
.
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6. Concluding remarks

In this paper, we have studied the lattice Toda field theory for finite-dimensional simple Lie
algebras and applied it to construct the lattice W currents. Our main claims are as follows:
(1) the Poisson structure for the lattice Toda fields can be identified with that for the q-
deformed W algebra, and also describes the action of the q-deformed screening operators;
(2) the correspondence (1) gives a clue to construct the lattice W algebra. We have shown (1)
in the cases of classical simple Lie algebras, and concretely constructed the lattice W algebra
for B2 and C2. The lattice WB2, C2 algebras are the simplest examples associated with non-
simply-laced Dynkin diagrams, and one sees that the dual structure of Lie algebras B2 and C2

appears in the lattice system. Because of the symmetrized Cartan matrix, the lattice Miura
transformation for WC2 (B2) currents is related to the continuous system of the opposite
symmetry, the B2 (C2) KdV equation.

As a future problem, it is interesting to study the lattice g-Toda field theory based on the
exchange algebra on the lattice, besides known Al cases [31, 32]. To look for the discrete
soliton equations related to the lattice WB2, C2 algebras is also an open problem. These
soliton equations may link to the extension of the Painlevé equation based on affine Weyl
groups [33, 34], as inferred from the Al case.
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Appendix. The lattice WC2 algebra

After tedious calculations, we find that the currents (5.6) generate a closed algebra given by
the following Poisson relations:

{W(1)
n ,W

(1)
n+1} = W(1)

n W
(1)
n+1

(
1 − W(2)

n − W
(2)
n+3

)
{W(1)

n ,W
(1)
n+2} = W(1)

n W
(1)
n+2

(− 1 + W
(2)
n+2

)
{W(1)

n ,W
(1)
n+3} = W(1)

n W
(1)
n+3

(
1 − W(1)

n − W
(1)
n+3

)
{W(1)

n ,W
(1)
n+4} = −W(1)

n W
(1)
n+4W

(2)
n+3

{W(1)
n ,W

(1)
n+6} = −W(1)

n W
(1)
n+6W

(1)
n+3

{W(2)
n ,W

(1)
n+4} = −W(2)

n W
(1)
n+4W

(1)
n+1

{W(2)
n ,W

(1)
n+3} = W(1)

n W
(1)
n+3

(
1 − W(2)

n

)
{W(2)

n ,W
(1)
n+2} = −W(2)

n W
(1)
n+2W

(2)
n+1

{W(2)
n ,W

(1)
n+1} = W(2)

n W
(1)
n+1

(
1 − W(2)

n − W
(1)
n+1

)
{W(2)

n ,W(1)
n } = W(1)

n

(
W(1)

n − W(2)
n

)(
1 − W(2)

n

)
{W(2)

n ,W
(1)
n−1} = W(2)

n W
(1)
n−1

(
W

(2)
n−1 − W

(2)
n+1

)
{W(2)

n ,W
(1)
n−2} = −W

(1)
n−2

(
W

(1)
n−2 − W(2)

n

)(
1 − W(2)

n

)
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{W(2)
n ,W

(1)
n−3} = W(2)

n W
(1)
n−3

(− 1 + W(2)
n + W

(1)
n−3

)
{W(2)

n ,W
(1)
n−4} = W(2)

n W
(1)
n−4W

(2)
n−1

{W(2)
n ,W

(1)
n−5} = W

(1)
n−5W

(1)
n−2

(
W(2)

n − 1
)

{W(2)
n ,W

(1)
n−6} = W(2)

n W
(1)
n−6W

(1)
n−3

{W(2)
n ,W

(2)
n+1} = W(2)

n W
(2)
n+1

(
1 − W(2)

n − W
(2)
n+1

)
{W(2)

n ,W
(2)
n+2} = −W(2)

n W
(2)
n+2

(
W(1)

n + W
(2)
n+1

)
+ W(1)

n

(
W(2)

n + W
(2)
n+1 + W

(2)
n+2 − 1

)
{W(2)

n ,W
(2)
n+3} = −W(2)

n W
(2)
n+3

(
W(1)

n + W
(1)
n+1

)− W
(1)
n+1

(
W(1)

n + W(2)
n

)
+ W(1)

n W
(2)
n+3

{W(2)
n ,W

(2)
n+4} = −W(2)

n W
(2)
n+4W

(1)
n+1.

Other Poisson brackets are obtained from the above or zero.
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